Chào mừng quý vị đến với website của ...
Quý vị chưa đăng nhập hoặc chưa đăng ký làm thành viên, vì vậy chưa thể tải được các tài liệu của Thư viện về máy tính của mình.
Nếu chưa đăng ký, hãy nhấn vào chữ ĐK thành viên ở phía bên trái, hoặc xem phim hướng dẫn tại đây
Nếu đã đăng ký rồi, quý vị có thể đăng nhập ở ngay phía bên trái.
Nếu chưa đăng ký, hãy nhấn vào chữ ĐK thành viên ở phía bên trái, hoặc xem phim hướng dẫn tại đây
Nếu đã đăng ký rồi, quý vị có thể đăng nhập ở ngay phía bên trái.
Giao an on thi lop 10

- 0 / 0
(Tài liệu chưa được thẩm định)
Nguồn:
Người gửi: Nguyễn Quốc Huy (trang riêng)
Ngày gửi: 17h:19' 28-03-2012
Dung lượng: 1.2 MB
Số lượt tải: 239
Nguồn:
Người gửi: Nguyễn Quốc Huy (trang riêng)
Ngày gửi: 17h:19' 28-03-2012
Dung lượng: 1.2 MB
Số lượt tải: 239
Số lượt thích:
0 người
ÔN TẬP
I. MỤC TIÊU.
Kiến thức: HS hệ thống hoá các kiến thức đại số gồm:
+ Rút gọn biểu thức
+ Hàm số bậc nhất
+ .Phương trình bậc nhất – Hệ phương trình bậc nhất
Kỹ năng: HS vận dụng thành thạo hệ thức Viét vào giải toán, nắm vững các dạng giải bài toán bằng cách lập phương trình.
Thái độ: Tính cẩn thận trong tính toán, làm việc theo qui trình.
II. CHUẨN BỊ CỦA THẦY VÀ TRÒ.
Thầy: + Bảng phụ viết sẵn nội dung hệ thức Viét, phiếu học tập đề bài.
Trò: + Bảng phụ nhóm, bút dạ, máy tính bỏ túi để tính toán.
III.TIẾN TRÌNH TIẾT DẠY.
Ổn định tổ chức: (1’) Kiểm tra sĩ số HS.
Kiểm tra bài cũ: (trong quá trình ôn tập)
Bài mới
(Giới thiệu vào bài (1ph)
( Các hoạt động dạy
I Bài tập rút gọn
1 :
1) Đơn giản biểu thức : P = .
2) Cho biểu thức : Q =
a) Rút gọn biểu thức Q.
b) Tìm x để > - Q.
c) Tìm số nguyên x để Q có giá trị nguyên.
Hướng dẫn :
1. P = 6
2. a) ĐKXĐ : x > 0 ; x 1. Biểu thức rút gọn : Q =
b) > - Q x > 1.
c) x = thì Q Z
II hàm số bậc nhất
Ví dụ :
1) Viết phương trình đường thẳng đi qua hai điểm (1 ; 2) và (-1 ; -4).
2) Tìm toạ độ giao điểm của đường thẳng trên với trục tung và trục hoành.
Hướng dẫn :
1) Gọi pt đường thẳng cần tìm có dạng : y = ax + b.
Do đường thẳng đi qua hai điểm (1 ; 2) và (-1 ; -4) ta có hệ pt :
Vậy pt đường thẳng cần tìm là y = 3x – 1
2) Đồ thị cắt trục tung tại điểm có tung độ bằng -1 ; Đồ thị cắt trục hoành tại điểm có hoành độ bằng
III Phương trình bậc nhất một ần Hệ phương trình bậc nhất 2 ẩn .
A. kiến thức cần nhớ :
1. Phương trình bậc nhất : ax + b = 0.
Phương pháp giải :
+ Nếu a ≠ 0 phương trình có nghiệm duy nhất : x =
+ Nếu a = 0 và b ≠ 0 phương trình vô nghiệm.
+ Nếu a = 0 và b = 0 phương trình có vô số nghiệm.
2. Hệ phương trình bậc nhất hai ẩn :
Phương pháp giải :
Sử dụng một trong các cách sau :
+) Phương pháp thế : Từ một trong hai phương trình rút ra một ẩn theo ẩn kia , thế vào phương trình thứ 2 ta được phương trình bậc nhất 1 ẩn.
+) Phương pháp cộng đại số :
- Quy đồng hệ số một ẩn nào đó (làm cho một ẩn nào đó của hệ có hệ số bằng nhau hoặc đối nhau).
- Trừ hoặc cộng vế với vế để khử ẩn đó.
- Giải ra một ẩn, suy ra ẩn thứ hai.
B. Ví dụ minh họa :
Ví dụ 1 : Giải các phương trình sau đây :
a) ĐS : ĐKXĐ : x ≠ 1 ; x ≠ - 2. S = .
b) = 2
Giải : ĐKXĐ : ≠ 0. (*)
Khi đó : = 2 2x = - 3 x =
Với x = thay vào (* ) ta có ()3 + + 1 ≠ 0
Vậy x = là nghiệm.
Ví dụ 2 : Giải và biện luận phương trình theo m :
(m – 2)x + m2 – 4 = 0 (1)
+ Nếu
I. MỤC TIÊU.
Kiến thức: HS hệ thống hoá các kiến thức đại số gồm:
+ Rút gọn biểu thức
+ Hàm số bậc nhất
+ .Phương trình bậc nhất – Hệ phương trình bậc nhất
Kỹ năng: HS vận dụng thành thạo hệ thức Viét vào giải toán, nắm vững các dạng giải bài toán bằng cách lập phương trình.
Thái độ: Tính cẩn thận trong tính toán, làm việc theo qui trình.
II. CHUẨN BỊ CỦA THẦY VÀ TRÒ.
Thầy: + Bảng phụ viết sẵn nội dung hệ thức Viét, phiếu học tập đề bài.
Trò: + Bảng phụ nhóm, bút dạ, máy tính bỏ túi để tính toán.
III.TIẾN TRÌNH TIẾT DẠY.
Ổn định tổ chức: (1’) Kiểm tra sĩ số HS.
Kiểm tra bài cũ: (trong quá trình ôn tập)
Bài mới
(Giới thiệu vào bài (1ph)
( Các hoạt động dạy
I Bài tập rút gọn
1 :
1) Đơn giản biểu thức : P = .
2) Cho biểu thức : Q =
a) Rút gọn biểu thức Q.
b) Tìm x để > - Q.
c) Tìm số nguyên x để Q có giá trị nguyên.
Hướng dẫn :
1. P = 6
2. a) ĐKXĐ : x > 0 ; x 1. Biểu thức rút gọn : Q =
b) > - Q x > 1.
c) x = thì Q Z
II hàm số bậc nhất
Ví dụ :
1) Viết phương trình đường thẳng đi qua hai điểm (1 ; 2) và (-1 ; -4).
2) Tìm toạ độ giao điểm của đường thẳng trên với trục tung và trục hoành.
Hướng dẫn :
1) Gọi pt đường thẳng cần tìm có dạng : y = ax + b.
Do đường thẳng đi qua hai điểm (1 ; 2) và (-1 ; -4) ta có hệ pt :
Vậy pt đường thẳng cần tìm là y = 3x – 1
2) Đồ thị cắt trục tung tại điểm có tung độ bằng -1 ; Đồ thị cắt trục hoành tại điểm có hoành độ bằng
III Phương trình bậc nhất một ần Hệ phương trình bậc nhất 2 ẩn .
A. kiến thức cần nhớ :
1. Phương trình bậc nhất : ax + b = 0.
Phương pháp giải :
+ Nếu a ≠ 0 phương trình có nghiệm duy nhất : x =
+ Nếu a = 0 và b ≠ 0 phương trình vô nghiệm.
+ Nếu a = 0 và b = 0 phương trình có vô số nghiệm.
2. Hệ phương trình bậc nhất hai ẩn :
Phương pháp giải :
Sử dụng một trong các cách sau :
+) Phương pháp thế : Từ một trong hai phương trình rút ra một ẩn theo ẩn kia , thế vào phương trình thứ 2 ta được phương trình bậc nhất 1 ẩn.
+) Phương pháp cộng đại số :
- Quy đồng hệ số một ẩn nào đó (làm cho một ẩn nào đó của hệ có hệ số bằng nhau hoặc đối nhau).
- Trừ hoặc cộng vế với vế để khử ẩn đó.
- Giải ra một ẩn, suy ra ẩn thứ hai.
B. Ví dụ minh họa :
Ví dụ 1 : Giải các phương trình sau đây :
a) ĐS : ĐKXĐ : x ≠ 1 ; x ≠ - 2. S = .
b) = 2
Giải : ĐKXĐ : ≠ 0. (*)
Khi đó : = 2 2x = - 3 x =
Với x = thay vào (* ) ta có ()3 + + 1 ≠ 0
Vậy x = là nghiệm.
Ví dụ 2 : Giải và biện luận phương trình theo m :
(m – 2)x + m2 – 4 = 0 (1)
+ Nếu
 






Các ý kiến mới nhất